Vibe Coding Forem

Y.C Lee
Y.C Lee

Posted on

RAG Architecture & LLM Development Overview

Phase 2-3 Implementation Guide: RAG Architecture & LLM Development

Overview

This guide provides structured implementation details for Phase 2 (Design) and Phase 3 (Implementation) of your semiconductor AI program, focusing on Retrieval-Augmented Generation (RAG) architecture and private LLM model development.


PHASE 2: DESIGN (Months 3-5)

2.1 System Architecture Design Principles

Core Design Requirements

Principle Implementation Strategy Business Impact
Scalability Modular microservices architecture Support fab expansion without system redesign
Security On-premises deployment with encrypted data pipelines Protect IP and comply with semiconductor regulations
Modularity Independent components (ingestion, processing, output) Enable component updates without system downtime
Traceability Metadata tagging throughout data pipeline Complete audit trail for manufacturing decisions

Architecture Components

┌─────────────────────────────────────────────────┐
│                 User Interface                   │
├─────────────────────────────────────────────────┤
│ Chat Interface │ Dashboards │ Mobile │ API      │
├─────────────────────────────────────────────────┤
│                RAG Engine Core                   │
├─────────────────────────────────────────────────┤
│ Query Router │ Context Retrieval │ LLM Service  │
├─────────────────────────────────────────────────┤
│              Knowledge Base Layer                │
├─────────────────────────────────────────────────┤
│ Vector Store │ Graph DB │ Document Store        │
├─────────────────────────────────────────────────┤
│                Data Integration                  │
├─────────────────────────────────────────────────┤
│ MES │ APC │ FDC │ WAT │ CP │ Defect │ Tool Health│
└─────────────────────────────────────────────────┘
Enter fullscreen mode Exit fullscreen mode

2.2 RAG Implementation with Vector Embeddings

Knowledge Base Categorization Strategy

Document Type Processing Method Embedding Strategy
SOPs Textual documents → Semantic chunks sentence-transformers/all-MiniLM-L6-v2
BKMs Procedural guides → Step-by-step vectors Custom domain-tuned embeddings
Standards (SEMI E5) Structured protocols → Hierarchical embeddings Multi-level vector representation
Historical Data Time-series + metadata → Temporal embeddings Combined temporal-semantic vectors

Technical Implementation Workflow

Step 1: Document Processing Pipeline

# SOP Implementation Steps
1. Document Ingestion
   - PDF/Word extraction using PyPDF2/python-docx
   - Confluence/SharePoint API integration
   - Metadata extraction (author, date, process area)

2. Text Preprocessing
   - Remove formatting artifacts
   - Standardize terminology using semiconductor glossary
   - Split into semantic chunks (512-1024 tokens)

3. Vector Generation
   - Use sentence-transformers/all-MiniLM-L6-v2
   - Generate embeddings for each chunk
   - Store with metadata (document_id, chunk_id, process_area)
Enter fullscreen mode Exit fullscreen mode

Step 2: FAISS Index Construction

# Production Implementation
1. Install Dependencies
   pip install faiss-gpu transformers sentence-transformers

2. Build Vector Index
   - Load pre-processed documents
   - Generate embeddings batch-wise (1000 docs/batch)
   - Create FAISS index with IVF clustering for fast retrieval
   - Save index to persistent storage

3. Retrieval Function
   - Query embedding generation
   - Top-k similarity search (k=5-10)
   - Context ranking and filtering
   - Metadata-based result refinement
Enter fullscreen mode Exit fullscreen mode

RAG Query Processing Flow

User Query → Embedding → FAISS Search → Context Retrieval → 
LLM Augmentation → Response Generation → Quality Check → Output
Enter fullscreen mode Exit fullscreen mode

Example Query Process:

  • Input: "Trace wafer resume for Lot X"
  • Retrieval: Top-5 relevant SOPs, BKMs, and historical lot data
  • Context: Assembled relevant procedures and similar cases
  • Generation: Step-by-step traceability report with references

2.3 Data Integration with ETL Pipelines

Apache Airflow DAG Structure

ETL Pipeline Architecture

# DAG Configuration
dag = DAG('semiconductor_etl_pipeline',
    schedule_interval='@daily',
    start_date=datetime(2024, 1, 1),
    catchup=False
)

# Task Dependencies
extract_mes >> transform_lot_data >> load_vector_store
extract_apc >> transform_process_data >> load_vector_store  
extract_fdc >> transform_fault_data >> load_vector_store
Enter fullscreen mode Exit fullscreen mode

Key ETL Tasks:

System Extract Method Transform Logic Load Target
MES SQL queries via DB hooks Lot tracking normalization Time-series DB + Vector store
APC REST API calls Parameter standardization Process parameter store
FDC Real-time stream processing Anomaly detection preprocessing Fault pattern database
WAT/CP Database export Test result aggregation Yield analysis warehouse

Traceability Implementation:

# Metadata Tagging Strategy
metadata_template = {
    'lot_id': 'LOT_12345',
    'wafer_id': 'W001',
    'process_step': 'Lithography',
    'timestamp': '2024-01-15T10:30:00Z',
    'tool_id': 'TOOL_A1',
    'data_source': 'MES',
    'quality_flag': 'validated'
}
Enter fullscreen mode Exit fullscreen mode

2.4 Private Model Planning with LoRA

LoRA vs Full Fine-tuning Decision Matrix

Aspect LoRA (Recommended) Full Fine-tuning
Compute Requirements 10-20% of base model parameters 100% parameter updates
Training Time 2-4 hours (8B model) 20-40 hours
Memory Usage ~16GB GPU memory ~80GB+ GPU memory
IP Protection Adapter weights only Full model exposure
Update Flexibility Easy adapter swapping Complete retraining

Implementation Strategy

Base Model Selection:

  • Primary: Llama-3-8B (balanced performance/efficiency)
  • Alternative: CodeLlama-13B (for code generation tasks)
  • Specialized: Mistral-7B-Instruct (instruction following)

Dataset Preparation Workflow:

# Data Curation Process
1. Internal Data Collection
   - Anonymized yield logs  Q&A pairs
   - Equipment troubleshooting  Problem-solution pairs
   - Process optimization  Parameter-outcome pairs

2. External Data Integration  
   - arXiv papers on semiconductor ML
   - SEMI standards documentation
   - Open-source fab simulation data

3. Data Quality Assurance
   - Remove PII and proprietary details
   - Balance defect type distributions
   - Validate technical accuracy with domain experts
Enter fullscreen mode Exit fullscreen mode

PHASE 3: IMPLEMENTATION (Months 6-10)

3.1 LLM Fine-tuning Implementation

Development Environment Setup

# Production Environment
pip install transformers==4.35.0 peft==0.6.0 datasets==2.14.0
pip install torch==2.1.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
pip install accelerate==0.24.0 bitsandbytes==0.41.0
Enter fullscreen mode Exit fullscreen mode

LoRA Configuration Template

# Optimal LoRA Settings for Semiconductor Domain
lora_config = LoraConfig(
    r=16,                    # Rank (balance between efficiency and performance)
    lora_alpha=32,           # Scaling factor
    target_modules=["q_proj", "v_proj", "k_proj", "o_proj"],
    lora_dropout=0.1,        # Prevent overfitting
    bias="none",             # No bias adaptation
    task_type="CAUSAL_LM"    # Language modeling task
)
Enter fullscreen mode Exit fullscreen mode

Training Pipeline Implementation

# Complete Training Workflow
def train_semiconductor_model():
    # 1. Load base model
    model = AutoModelForCausalLM.from_pretrained(
        "meta-llama/Llama-2-7b-hf",
        torch_dtype=torch.float16,
        device_map="auto"
    )

    # 2. Apply LoRA adaptation
    model = get_peft_model(model, lora_config)

    # 3. Prepare dataset
    dataset = load_semiconductor_dataset()  # Custom function
    tokenized_dataset = dataset.map(tokenize_function)

    # 4. Training configuration
    training_args = TrainingArguments(
        output_dir="./semiconductor-llama-lora",
        num_train_epochs=3,
        per_device_train_batch_size=4,
        gradient_accumulation_steps=4,
        warmup_steps=100,
        learning_rate=2e-4,
        fp16=True,
        logging_steps=10,
        save_steps=500,
        evaluation_strategy="steps",
        eval_steps=500
    )

    # 5. Execute training
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=tokenized_dataset["train"],
        eval_dataset=tokenized_dataset["validation"]
    )

    trainer.train()
    return model
Enter fullscreen mode Exit fullscreen mode

3.2 API Development with FastAPI

Production API Architecture

# FastAPI Implementation
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import asyncio

app = FastAPI(title="Semiconductor AI Assistant")

class QueryRequest(BaseModel):
    query: str
    context_type: str = "general"  # Options: sop, bkm, defect_analysis
    lot_id: Optional[str] = None

class QueryResponse(BaseModel):
    response: str
    confidence: float
    sources: List[str]
    processing_time: float

@app.post("/query", response_model=QueryResponse)
async def process_query(request: QueryRequest):
    start_time = time.time()

    # 1. Context retrieval via RAG
    context = await retrieve_context(
        query=request.query,
        context_type=request.context_type,
        lot_id=request.lot_id
    )

    # 2. LLM generation
    response = await generate_response(
        query=request.query,
        context=context
    )

    # 3. Quality validation
    confidence = calculate_confidence(response, context)

    processing_time = time.time() - start_time

    return QueryResponse(
        response=response,
        confidence=confidence,
        sources=extract_sources(context),
        processing_time=processing_time
    )

# Additional endpoints
@app.post("/defect-analysis")
async def analyze_defects(fdc_logs: dict):
    """Analyze FDC logs for defect classification"""

@app.post("/yield-prediction")  
async def predict_yield(process_params: dict):
    """Predict yield based on process parameters"""

@app.get("/lot-trace/{lot_id}")
async def trace_lot(lot_id: str):
    """Complete lot traceability report"""
Enter fullscreen mode Exit fullscreen mode

3.3 Multi-View Analysis Implementation

Feature Development Strategy

# Multi-dimensional Analysis Engine
class MultiViewAnalyzer:
    def __init__(self, llm_model, data_connectors):
        self.model = llm_model
        self.connectors = data_connectors

    async def generate_analysis_report(self, query: str, dimensions: List[str]):
        """
        Generate multi-dimensional analysis reports

        Args:
            query: Analysis request (e.g., "yield impact analysis")
            dimensions: Analysis dimensions ["tool_health", "process_step", "time"]
        """

        # 1. Data aggregation across dimensions
        aggregated_data = {}
        for dimension in dimensions:
            connector = self.connectors[dimension]
            aggregated_data[dimension] = await connector.fetch_data(query)

        # 2. LLM-powered analysis
        prompt = self.build_analysis_prompt(query, aggregated_data, dimensions)
        analysis = await self.model.generate(prompt)

        # 3. Visualization recommendations
        viz_suggestions = self.suggest_visualizations(dimensions, aggregated_data)

        return {
            "analysis": analysis,
            "data": aggregated_data,
            "visualizations": viz_suggestions,
            "dimensions": dimensions
        }

# Example Usage
analyzer = MultiViewAnalyzer(llm_model, data_connectors)
report = await analyzer.generate_analysis_report(
    query="CP test yield impact analysis",
    dimensions=["tool_health", "wafer_position", "process_parameters"]
)
Enter fullscreen mode Exit fullscreen mode

3.4 RLHF Integration for Domain Alignment

Human Feedback Collection System

# RLHF Implementation Framework
class SemiconductorRLHF:
    def __init__(self, base_model, reward_model):
        self.base_model = base_model
        self.reward_model = reward_model

    def collect_preferences(self, queries: List[str], responses: List[List[str]]):
        """
        Collect engineer preferences for response ranking

        Args:
            queries: List of technical queries
            responses: List of response pairs for each query
        """
        preferences = []
        for i, (query, response_pair) in enumerate(zip(queries, responses)):
            # Present to domain experts for ranking
            expert_rating = self.get_expert_feedback(query, response_pair)
            preferences.append({
                "query": query,
                "responses": response_pair,
                "preference": expert_rating,
                "expert_id": expert_rating["expert_id"],
                "confidence": expert_rating["confidence"]
            })
        return preferences

    def train_reward_model(self, preferences):
        """Train reward model based on expert preferences"""
        # Implementation using transformers and preference learning
        pass

    def ppo_fine_tuning(self, queries: List[str]):
        """PPO-based fine-tuning using reward model"""
        # Implementation using TRL library
        pass

# Training Pipeline
rlhf_trainer = SemiconductorRLHF(llama_model, reward_model)

# Step 1: Collect preferences from process engineers
preferences = rlhf_trainer.collect_preferences(
    queries=["Analyze CP data for yield impact", "Trace wafer processing issues"],
    responses=model_generated_responses
)

# Step 2: Train reward model
rlhf_trainer.train_reward_model(preferences)

# Step 3: Fine-tune with PPO
aligned_model = rlhf_trainer.ppo_fine_tuning(evaluation_queries)
Enter fullscreen mode Exit fullscreen mode

3.5 Success Measurement Framework

Custom Benchmark Development

# Semiconductor-Specific Evaluation Metrics
class SemiconductorEvaluator:
    def __init__(self):
        self.metrics = {
            "technical_accuracy": self.evaluate_technical_accuracy,
            "terminology_precision": self.evaluate_terminology,
            "traceability_completeness": self.evaluate_traceability,
            "actionability": self.evaluate_actionability
        }

    def evaluate_model_performance(self, model, test_queries):
        results = {}
        for metric_name, evaluator in self.metrics.items():
            score = evaluator(model, test_queries)
            results[metric_name] = score
        return results

    def evaluate_technical_accuracy(self, model, queries):
        """Validate technical correctness with domain experts"""
        correct_responses = 0
        for query in queries:
            response = model.generate(query)
            expert_validation = self.get_expert_validation(query, response)
            if expert_validation["correct"]:
                correct_responses += 1
        return correct_responses / len(queries)

# Benchmark Test Cases
benchmark_queries = [
    "What are the root causes for high Vt variation in PMOS devices?",
    "Analyze FDC alarms for lithography step in lot ABC123",
    "Recommend process adjustments for improving CP yield",
    "Trace defect source from WAT to final test results"
]

evaluator = SemiconductorEvaluator()
performance_scores = evaluator.evaluate_model_performance(
    model=fine_tuned_model,
    test_queries=benchmark_queries
)
Enter fullscreen mode Exit fullscreen mode

Decision Points and Recommendations

3.6 Critical Decision Matrix

Decision Area Options Recommendation Rationale
Base Model Llama-3-8B vs CodeLlama-13B Llama-3-8B Better general reasoning, lower compute requirements
Vector Database FAISS vs Pinecone vs Qdrant Qdrant Open-source, production-ready, good filtering
Fine-tuning Method LoRA vs QLoRA vs Full LoRA (r=16) Optimal efficiency-performance balance
Deployment On-premises vs Hybrid On-premises IP protection, data sovereignty
ETL Orchestration Airflow vs Prefect Airflow Industry standard, extensive connectors

3.7 Implementation Priorities

Phase 2 (Months 3-5) - Critical Path:

  1. Week 1-2: RAG architecture design and FAISS implementation
  2. Week 3-6: ETL pipeline development with Airflow
  3. Week 7-10: Knowledge base processing and vector store population
  4. Week 11-12: Initial API framework with FastAPI

Phase 3 (Months 6-10) - Implementation Focus:

  1. Month 6: LoRA fine-tuning pipeline development
  2. Month 7-8: Multi-view analysis feature implementation
  3. Month 9: RLHF integration and domain expert feedback collection
  4. Month 10: Production deployment and performance benchmarking

3.8 Risk Mitigation Checklist

  • Data Quality: Implement automated data validation pipelines
  • Model Drift: Establish continuous monitoring and retraining procedures
  • Security: Deploy comprehensive access controls and audit logging
  • Scalability: Design for horizontal scaling with containerization
  • Expert Engagement: Maintain regular feedback loops with process engineers

This implementation guide provides the technical depth needed for successful execution while maintaining clear decision points for your engineering leadership team.

Top comments (0)